Shop-Wechsel

Der Warenkorb wird nicht übernommen.

Zum Privatkunden Shop

POWERPASTE: Die Wasserstoff-Antwort für Kleinfahrzeuge

Forscher des IFAM Dresden entwickeln Feststoff-Wasserstoff-Energiespeiecher für Raumtemperatur und Umgebungsdruck

Einer der Kraftstoff-Hoffnungsträger ist Wasserstoff. Üblicherweise wird er mit 700-fachem Atmosphärendruck in die Drucktanks der Fahrzeuge gepresst. Von dort aus strömt er in eine Brennstoffzelle, wo er zu Strom umgewandelt wird. Der Strom wiederum speist einen Elektromotor, der das Fahrzeug antreibt. Für Autos ist dieser Ansatz schon recht ausgereift: Einige hundert Wasserstoff-PKW fahren bereits auf Deutschlands Straßen. Und das deutsche Wasserstoff-Tankstellen-Netz soll in den nächsten drei Jahren von derzeit 100 auf 400 Tankstellen erweitert werden. Kleinfahrzeugen wie E-Scootern, Rollern und Co. nutzt das allerdings wenig: Der Druckstoß beim Tanken wäre zu groß. Ist das also das »Aus« der Wasserstofftechnologie für E-Scooter und Co.?

Durchaus nicht! Forschende am Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM in Dresden haben eine Wasserstoff-Lösung entwickelt, die wie geschaffen ist für Kleinfahrzeuge: Die POWERPASTE, die auf dem Feststoff Magnesiumhydrid basiert. »Mit POWERPASTE lässt sich Wasserstoff bei Raumtemperatur und Umgebungsdruck chemisch speichern und bedarfsgerecht wieder freisetzen«, konkretisiert Dr. Marcus Vogt, Wissenschaftler am Fraunhofer IFAM. Das ist auch dann unkritisch, wenn der Roller bei sommerlicher Hitze stundenlang in der Sonne steht, denn die POWERPASTE zersetzt sich erst oberhalb von etwa 250 Grad Celsius. Der Tankvorgang gestaltet sich denkbar einfach: Statt eine Tankstelle anzusteuern, wechselt der Roller-Fahrer einfach eine Kartusche und füllt zusätzlich Leitungswasser in einen Wassertank – fertig. Das kann er auch bequem zuhause erledigen oder unterwegs.

Ausgangsmaterial der POWERPASTE ist pulverförmiges Magnesium – eines der häufigsten Elemente und somit ein leicht verfügbarer Rohstoff. Bei 350 Grad Celsius und fünf- bis sechsfachem Atmosphärendruck wird dieses mit Wasserstoff zu Magnesiumhydrid umgesetzt. Nun kommen noch Ester und Metallsalz hinzu – und fertig ist die POWERPASTE. Um das Fahrzeug anzutreiben, befördert ein Stempel die POWERPASTE aus der Kartusche heraus. Aus dem Wassertank wird Wasser zugegeben, es entsteht gasförmiger Wasserstoff. Die Menge wird dabei hochdynamisch dem Wasserstoffbedarf der Brennstoffzelle angepasst. Der Clou: Nur die Hälfte des Wasserstoffs stammt aus der POWERPASTE, die andere Hälfe liefert das Wasser zu. »Die Energiespeicherdichte der POWERPASTE ist daher enorm: Sie ist wesentlich höher als bei einem 700 bar-Drucktank. Verglichen mit Batterien hat sie sogar die zehnfache Energiespeicherdichte«, freut sich Vogt. Für den Fahrer heißt das: Er erzielt mit der POWERPASTE eine ähnliche Reichweite wie mit der gleichen Menge Benzin, wenn nicht sogar eine größere. Auch beim Reichweitenvergleich mit auf 700 bar komprimiertem Wasserstoff schneidet die POWERPASTE besser ab. Dies lässt die POWERPASTE auch für Autos, Zustellfahrzeuge oder Range Extender – die die Reichweite von Elektroautos erhöhen – interessant werden. Ja, selbst große Drohnen könnten ihre Reichweite mit der Wasserstoff-Paste deutlich erhöhen und so statt zwanzig Minuten auch mehrere Stunden in der Luft bleiben. Eine Anwendung der etwas anderen Art bietet sich beim Camping: Hier kann die POWERPASTE via Brennstoffzelle Strom für Kaffeemaschine und Toaster bereitstellen.

Neben der großen Reichweite gibt es einen weiteren Punkt, der für die POWERPASTE spricht: Während gasförmiger Wasserstoff eine kostenintensive Infrastruktur erfordert, lässt sich die POWERPASTE auch dort einsetzen, wo eine solche Infrastruktur fehlt. Sprich: Wo es keine Wasserstofftankstellen gibt. Stattdessen könnte jede beliebige Tankstelle POWERPASTE in Kartuschen oder Kanistern anbieten. Denn die Paste ist fließfähig und pumpbar – sie kann daher auch über einen normalen Tankvorgang und vergleichsweise kostengünstige Abfüllanlagen getankt werden.

Weitere Informationen finden Sie hier

 

Bild: Fraunhofer IFAM Dresden